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Abstract— In this  paper  we proposes a cache consistency scheme based on a previously proposed architecture for caching database 
data in MANETs. The original scheme for data caching stores the queries that are submitted by requesting nodes in special nodes, called 
query directories (QDs), and uses these queries to locate the data (responses) that are stored in the nodes that requested them, called 
caching nodes (CNs). The consistency scheme is server-based in which control mechanisms are implemented to adapt the process of 
caching a data item and updating it by the server to its popularity and its data update rate at the server. The system implements methods to 
handle disconnections of QD and CN nodes from the network and to control how the cache of each node is updated or discarded when it 
returns to the network. Estimates for the average response time of node requests and the average node bandwidth utilization are derived in 
order to determine the gains (or costs) of employing our scheme in the MANET. Moreover, ns2 simulations were performed to measure 
several parameters, like the average data request response time, cache update delay, hit ratio, and bandwidth utilization. The results 
demonstrate the advantage of the proposed scheme over existing systems. 

Index Terms— Cache consistency, data consistency, invalidation, Kalmam filter prediction techniques, MANET, server-based approach, 
and utility theory. 

——————————      —————————— 

1 INTRODUCTION                                                                     
In a mobile ad hoc network (MANET), data caching is essen- tial as it reduces contention in the network, increases the 
probability of nodes getting desired data, and improves sys-
tem performance [24], [28]. The major issue that faces cache 
management is the maintenance of data consistency between 
the client cache and the server [28]. In a MANET, all messages 
sent between the server and the cache are subject to network 
delays, thus, impeding consistency by download delays that 
are considerably noticeable and more severe in wireless mo-
bile devices. All cache consistency algorithms are developed 
with the same goal in mind: to increase the probability of serv-
ing data items from the cache that are identical to those on the 
server. A large number of such algorithms have been proposed 
in the literature, and they fall into three groups: server invali-
dation, client polling, and time to live (TTL). With server inval-
idation, the server sends a report upon each update to the cli-
ent. Two examples are the Piggyback server invalidation [7] 
and the Invalidation report [19] mechanisms. In client polling, 
like the Piggyback cache validation of [8], a validation request 
is initiated according to a schedule. If the copy is up to date, 
the server informs the client that the data have not been modi-
fied; else the update is sent to the client. Finally, with TTL al-
gorithms, a server-assigned TTL value (e.g., T ) is stored 
alongside each data item d in the cache. The data d are consid-
ered valid until T time units pass since the cache update. Usu-
ally, the first request for d submitted by a client after the TTL 
expiration will be treated as a miss and will cause a trip to the 
server to fetch a fresh copy of d. Many algorithms were pro-

posed to determine TTL values, including the fixed TTL ap-
proach [6], adaptive TTL [32], and Squid’s LM-factor [17]. TTL-
based consistency algorithms are popular due to their simplic-
ity, sufficiently good performance, and flexibility to assign TTL 
values for individual data items [27]. However, TTL-based 
algorithms, like client polling algorithms, are weakly con-
sistent, in contrast to server invalidation schemes that are gen-
erally strongly consistent. According to [32], with strong con-
sistency algorithms, users are served strictly fresh data items, 
while with weak algorithms, there is a possibility that users 
may get inconsistent (stale) copies of the data. This work de-
scribes a server-based scheme implemented on top of the 
COACS caching architecture we proposed in [25]. In COACS, 
elected query directory (QD) nodes cache submitted queries 
and use them as indexes to data stored in the nodes that ini-
tially requested them (CN nodes). Since COACS did not im-
plement a consistency strategy, the system described in this 
paper fills that void and adds several improvements: 1) ena-
bling the server to be aware of the cache distribution in the 
MANET, 2) making the cached data items consistent with their 
version at the server, and 3) adapting the cache update process 
to the data update rate at the server relative to the request rate 
by the clients. With these changes, the overall design provides 
a complete caching system in which the server sends to the 
clients selective updates that adapt to their needs and reduces 
the average query response time. Next, Section 2 describes the 
proposed system while Section 3 discusses the experimental 
results, and Section 5 reviews some previous cache consisten-
cy techniques before concluding the paper in Section 6. 

2. EMINENT SERVER IMPROVED MECHANISM 
ESIM is a server-based approach that avoids many issues as-
sociated with push-based cache consistency approaches. Spe-
cifically, traditional server-based schemes are not usually 
aware of what data items are currently cached, as they might 
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have been replaced or deleted from the network due to node 
disconnections. Also, if the server data update rate is high rela-
tive to the nodes request rate, unnecessary network traffic 
would be generated, which could increase packet dropout rate 
and cause longer delays in answering node queries. ESIM re-
duces wireless traffic by tuning the cache update rate to the 
request rate for the cached data. 
 

2.1 Basic operations 
Before detailing the operations of ESIM, we list in Table 1 the 
messages used in the COACS architecture as we refer to them 
in the paper. Given that no consistency mechanism was im-
plemented in COACS, it was necessary to introduce four addi-
tional messages. In ESIM, the server autonomously sends data 
updates to the CNs, meaning that it has to keep track of which 
CNs cache which data items. This can be done using a simple 
table in which an entry consists of the id of a data item (or 
query) and the address of the CN that caches the data. A node 
that desires a data item sends its request to its nearest QD. If 
this QD finds the query in its cache, it forwards the request to 
the CN caching the item, which, in turn, sends the item to the 
requesting node (RN). 

   
 
Fig. 1. Scenarios for requesting and getting data in the COACS Archi-
tecture 
 
Otherwise, it forwards it to its nearest QD, which has not re-
ceived the request yet. If the request traverses all QDs without 
being found, a miss occurs and it gets forwarded to the server 
which sends the data item to the RN. In the latter case, after 
the RN receives the confirmation from the last traversed QD 
that it has cached the query, it becomes a CN for this data item 
and associates the address of this QD with the item and then 
sends a Server Cache Update Packet (SCUP) to the server, 
which, in turn, adds the CN’s address to the data item in its 
memory. This setup allows the server to send updates to the 
CNs directly whenever the data items are updated. Fig. 1 illus-
trates few data request and update scenarios that are de-
scribed below. In the figure, the requesting nodes (RNs) sub-
mit queries to their nearest QDs, as shown in the cases of RN1, 
RN2, and RN3 . The query of RN1 was found in QD1 , and so 

the latter forwarded the request to CN1, which returned the 
data directly to the RN. However, the query of RN2 was not 
found in any of the QDs, which prompted the last searched 
(QD1) to forward the request to the server, which, in turn, re-
plied to RN2 that became a CN for this data afterward. The 
figure also shows data updates (key data pairs) sent from the 
server to some of the CNs. 
 

2.2 Dealing with Query Replacement and Node Discon-
nections 
A potential issue concerns the server sending the CN updates 
for data that have been deleted (replaced), or sending the data 
out to a CN that has gone offline. To avoid this and reduce 
network traffic, cache updates can be stopped by sending the 
server Remove Update Entry Packets (RUEPs). This could oc-
cur in several scenarios. For example, if a CN leaves the net-
work, the QD, which first tries to forward it a request and 
fails, will set the addresses of all queries whose items are 
cached by this unreachable CN in its cache to À1, and sends 
an RUEP to the server containing the IDs of these queries. The 
server, in turn, changes the address of that CN in its cache to 
À1 and stops sending updates for these items. Later, if another 
node A requests and then caches one of these items, the server, 
upon receiving an SCUP from A, will associate A with this 
data item. Also, if a CN runs out of space when trying to cache 
a new item in , it applies a replacement mechanism to replace 
id with in and instructs the QD that caches the query associat-
ed with id to delete its entry. This causes the QD to send an 
RUEP to the server to stop sending updates for id in the fu-
ture. If a caching node CNd returns to the MANET after dis-
connecting, it sends a Cache Invalidation Check Packet (CICP) 
to each QD that caches queries associated with items held by 
this CN. A QD that receives a CICP checks for each item to see 
if it is cached by another node and then sends a Cache Invali-
dation Reply Packet (CIRP) to CNd containing all items not 
cached by other nodes. CNd then deletes from its cache those 
items whose IDs are not in the CIRP but were in the CICP. Af-
ter receiving a CIRP from all QDs to which it sent a CICP and 
deleting nonessential data items from its cache, CNd sends a 
CICP containing the IDs of all queries with data remaining in 
its cache to the server along with their versions. In the mean-
while, if CNd receives a request from a QD for an item in its 
cache, it adds the request to a waiting list. The server then cre-
ates a CIRP and includes in it fresh copies of the outdated 
items and sends it to CNd , which, in turn, updates its cache 
and answers all pending requests. Finally, and as described in 
[25], QD disconnections and reconnections do not alter the 
cache of the CNs, and hence, the pointers that the server holds 
to the CNs remain valid. 

2.3 Adapting to the Ratio of Update rate and Request 
rate 
ESIM suspends server updates when it deems that they are 
unnecessary. The mechanism requires the server to monitor 
the rate of local updates, Ru , and the rate of RN requests, Rr , 
for each data item di . Each CN also monitors these values for 
each data item that it caches. Whenever a CN receives an up-
date from the server, it calculates Ru =Rr and compares it to a 
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threshold À. If this ratio is greater than or equal to À, the CN 
will delete di and the associated information from its cache 
and will send an Entry Deletion Packet (EDP) to the QD (say, 
QDd) that caches query qi . The CN includes in the header of 
EDP a value for Ru , which tells QDd that di is being removed 
due to its high update-to-request ratio. Normally, when a QD 
gets an EDP, it removes the cached query from its cache, but 
here, the nonzero value of Ru in the EDP causes QDd to keep 
the query cached, but with no reference to a CN. Next, QDd 
will ask the server to stop sending updates for di . Afterward, 
when QDd receives a request from an RN node that includes 
qi , it forwards it to the server along with a DONT_CACHE 
flag in the header to be later passed in the reply, which in-
cludes the results, to the RN. Under normal circumstances in 
COACS, when an RN receives a data item from the server in 
response to a query it had submitted, it aESIMes the role of a 
CN for this item and will ask the nearest QD to cache the que-
ry. The DONT_CACHE flag instructs the RN to treat the result 
as if it were coming from the cache and not become a CN for 
it. Now, at the server, each time an update for qi occurs and a 
new Ru=Rr is computed, if this ratio falls below a second 
threshold,   (  < À), the server will reply to the RN with a DREP 
that includes the CACHE_NEW flag in the header. Upon re-
ceiving the DREP, the RN sends a QCRP with the 
CACHE_NEW flag to its nearest QD. If this QD caches the 
query of this item (with À1 as its CN address), it sets its ad-
dress to its new CN, else it forwards the request to its own 
nearest QD. If the QCRP traverses all QDs without being pro-
cessed (implying that the QD caching this item has gone of-
fline), the last QD at which the QCRP arrives will cache the 
query with the CN address. By appropriately selecting the 
values of   and À, the system can reduce unnecessary network 
traffic. The processing time of qi will suffer though when Ru 
=Rr is above after it had passed À since QDd will be sending 
qi to the server each time it receives it. However, the two 
thresholds allow for favoring bandwidth consumption over 
response time, or vice versa. This makes ESIM suitable for a 
variety of mobile computing applications: a large À may be 
used when disconnections are frequent and data availability is 
important, while a low À could be used in congested envi-
ronments where requests for data are infrequent or getting 
fresh data is not critical.  

2.4 Accounting for Latency in Receiving Server up-
dates 
Given the different processes running at the server and since it 
sends the updates to the CNs via unicasts, there may be a time 
gap between when an update occurs and when the CN actual-
ly receives the updated data item d. Hence, if the CN gets a 
request for d during this time, it will deliver a stale copy of d 
to the RN. Our design uses the time stamp that the server 
sends with each update in an attempt to mitigate this issue. To 
explain this, suppose that the time stamp sent with d is ts and 
the time of receiving d by the CN is tc . Upon getting an up-
date, the CN checks if it had served any RN a copy of d from 
its cache in the past ts-tc milliseconds. If it is the case, the CN 
sends a new DREP to the RN, but now it includes the fresh 
copy of d. The above solution assumes that the clocks of the 
nodes in the MANET and that of the server are synchronized. 

This assumption is realistic given that node clock synchroniza-
tion is part of the MAC layer protocol, as specified by the IEEE 
802.11 standards [4]. In particular, IEEE 802.11 specifies a Tim-
ing Synchronization Function (TSF) through which nodes syn-
chronize their clocks by broadcasting their timing information 
using periodic beacons. Since the Access Point (AP) is consid-
ered a node in the MANET and it can synchronize its clock 
with that of the server asynchronously with respect to the 
MANET through the wired network, it will be possible to syn-
chronize the clocks of the mobile nodes with that of the server 
at almost a zero cost to them (no protocol besides the MAC 
layer’s TSF is needed). The suitability of TSF for ESIM depends 
on its effectiveness. It was shown in [22] that using TSF, the 
maximum clock offset in the case of 500 nodes is 700  s. Several 
approaches were proposed to reduce this error. The Automatic 
Self-time Correcting Procedure (ASP) [16] reportedly reduced 
the maximum offset to 300  s, while the Multi hop Adaptive 
TSF (MATSF) method [22] cut it down to 50  s, but at the ex-
pense of adding 8 bits to the IEEE 802.11 frame. In Section 2.6, 
we show that ESIM is best characterized by the delta con-
sistency model [9], where the upper bound for the delta be-
tween the time of the server’s update and the time the RN gets 
a fresh copy is in tens of milliseconds. It follows that TSF will 
virtually not increase this delta, especially in small to moder-
ately sized networks. 

2.5 Overhead Cost 
When a node joins the network, the server will know about it 
when it first gets a query from it in a DRP that is forwarded by 
one of the QD nodes. Each data item at the server that is 
cached in the network is associated with a query id, a request 
rate, an update rate, and the address of the CN caching it. This 
additional information could cost the server about 16 bytes of 
extra storage per record. Hence, from a storage perspective, 
this cost may be deemed insignificant when considering the 
capabilities of modern servers. In terms of communication 
cost, the server communicates with the CNs information about 
the rates uses control packets (RUEP, SCUP, CICP, and CIRP) 
to manage the updating process. Here, it suffices to state that 
the simulation results (Section 4.10) indicate that the overall 
overhead traffic (including other packets that do not concern 
the server) is a small portion of the data traffic. Finally, from a 
processing load point of view, the server is only required to 
manipulate the update rate when appropriate. In conclusion, 
the server will not incur any notably additional load due to its 
role in this architecture. Hence, the system should be able to 
scale to a large number of cached items. A similar argument 
can be made for the CNs, although the main concern here is 
the impact on the cache space and replacement frequency. Us-
ing the same value of 5 KB for the average data item size (as in 
the simulations of Section 4), with caching capacity of 200 KB, 
a CN can cache about 40 data items. The additional overhead 
required for storing the request and update rates of one single 
data item is 8 bytes, and therefore, the overhead for storing the 
request and update rates at the CN is less than 0.16 percent of 
the available space. It follows that the space for caching at the 
CNs is minimally impacted by this additional information. 
Also, the frequency of cache replacements will not increase in 
a major way because of this. 
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2.6 Consistency Model 
From the characteristics of ESIM described above, we may 
relate it to the delta consistency model [21]. Assuming the RN 
always requires a fresh copy of item d, a CN may end up 
sending two copies of d to an RN in case the CN serves a copy 
of d from its cache shortly before receiving a server update for 
it. First, we emphasize that from the perspective of the RN, d 
will be considered fresh only if it is a duplicate of the server’s 
version at the time it is received (i.e., the server has not updat-
ed it just yet). We now define two boundary situations in 
which the RN gets a stale copy of d. In the first one, immedi-
ately after the server updates d at ts and sends it into the net-
work, the RN receives a copy of it from the CN based on a 
request it had sent. In the second one, right after the CN serves 
the RN a copy of d, it receives an updated version from the 
server. Assuming that when the server updates d, it immedi-
ately sends it out, and that it 
is connected to the MANET via an access point in the corner of 
the network, we can now compute an interval for the maxi-
mum “delta” between ts and the time the RN gets a fresh copy 
of it. To do this, we borrow some definitions from our work in 
[25] in relation to the average number of hops. The top two 
definitions below are used here while the other two are used 
in Section 3, but all are detailed in 

• HC is the average number of hops between the corner 
of the topology and a random node in the MANET. It applies 
when a packet is sent between the server and the random 
node. 

• HR is the expected number of hops between any two 
randomly selected nodes. 

• HA is the expected number of hops to traverse all the 
QDs in the system, which usually occurs in the case of a cache 
miss. 

• HD is the expected number of hops to reach the QD 
which holds the reference to the requested data, in the case of 
a hit 
Hence, if Tin is the transmission delay between two neighbor-
ing nodes in the wireless network and Tout is the delay in the 
wired network to/from the server, then the delay until the RN 
gets a fresh copy of d in the first situation is Tout þ HC Â Tin 
þ HR Â Tin, while in the second situation, it is simply HR Â 
Tin. Using the values of HC and HR in [2], we can deduce that 
the maximum delta will be expressed as Ámax 2 
½0:52Tina=r0; Tout þ 1:29Tin a=r0Š, where a is the side length 
of the square topography and r0 is the wireless transmission 
range. Taking a as 1,000 m, r0 as 100 m, Tin as 5 ms, and Tout 
as 40 ms, Ámax will be in the range of 25-105 ms. 

3. PERFORMANCE EVALUATION 
We used the ns2 software to implement the SSUM system, and 
to also simulate the Updated Invalidation Report (UIR) mech-
anism [10] in addition to a version of it that is implemented on 
top of COACS so that a presumably fairer comparison with 
ESIM is done.  

3.1 Network and Cache Simulation Parameters 
A single database server is connected to the wireless network 
through a fixed access point, while the mobile nodes are ran-
domly distributed. The client cache size was fixed to 200 Kb, 

meaning that a CN can cache between 20 and 200 items, while 
the QD cache size was set to 300 Kb, and therefore, a QD can 
cache about 600 queries. We used the least recently used (LRU) 
cache replacement policy when the cache is full and a data 
item needs to be cached. Each scenario started with electing 
one QD, but more were elected when space was needed. Each 
scenario lasted for 2,000 seconds and repeated 10 times with 
the seed of the simulation set to a new value each time, and 
the final result 
was taken as the average of the 10 runs. 
The SSUM system was implemented as a new C++ agent in ns2 
that gets attached to the node class in the tcl code at simula-
tion runtime. This implementation includes a cache class that 
defines and sets the needed data items as well as the opera-
tions of the caching methods that were described. Also, the 
routing protocols in ns2 were modified to process the SSUM 
packets and to implement the functions of the MDPF algo-
rithm used for traversing the QD system [3]. Other changes to 
the ns2 C++ code included modifying the packet header in-
formation which is used to control the cache update process. 
After implementing the changes in the C++ code, tcl scripts 
were written to run the various described scenarios 

3.2 The Query Model Parameters 
The client query model was chosen such that each node in the 
network generates a new request every Tq seconds. When the 
simulation starts, each node generates a new request, and after 
Tq seconds, it checks if it has not received a response for the 
request it generated in which case, it discards it and generates 
a new request. We chose a default value for Tq equal to 20 se-
conds, but in order to examine the effect of the request rate on 
the system performance, we simulated several scenarios with 
various request rates. The process of generating a new request 
followed a Zipf-like access pattern, which has been used fre-
quently to model nonuniform distributions [32]. In Zipf law, 
an item ranked where   ranges between 0 (uniform distribu-
tion) and 1 (strict Zipf distribution). The default value of the 
zipf parameter   was set to 0.5. Every second, the server up-
dates a number of randomly chosen data items, equal to a de-
fault value of 20. The default values of À and   were set to 1.25 
and 0.75, respectively, while the default number of node dis-
connections is 1 every two minutes with a period of 10 se-
conds, after which the node returns to the network. 

3.3 Varying the Number of Nodes 
This section presents the effects of varying the node density in 
the fixed network area. Fig. 5a shows that the query delay of 
UIR is much greater than that of ESIM and C_UIR. The reason 
for this is that an issued query in ESIM does not have to wait 
for any report from the server, as it is always served directly 
after it is issued, whereas in UIR, it must wait for the next UIR 
to arrive from the server before getting processed. Moreover, 
in the event of a local cache miss in UIR, the data item must be 
fetched from the server, but in COACS and C_UIR, the data 
are next searched for in the QD system for possible network 
cache hit. Fig. 5b shows that the update delays of UIR and 
C_UIR are less than that of ESIM when there are less than 100 
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nodes, simply because updates in UIR are broadcasted. 
 

 
Fig. 5. Query and update delay, hit ratio, and bandwidth usage versus 
number of nodes. 
 
But, when the number of nodes increases, congestion starts to 
buildup, which why the hit ratio of this scheme drops rapidly 
and its traffic increases as shown in Figs. 5c and 5d. Finally, we 
reiterate the fact that the presented update delay for UIR and 
C_UIR is not the total delay since it measures the time until 
the item’s ID reaches the RN/CN, whereas for ESIM, it is the 
entire delay since it is the time until the data item itself reaches 
the CN. 

3.4 Varying the Query Request Rate 
When the request rate is increased, the query delay of ESIM 
rises as shown in Fig. 6a due to queuing more packets in the 
nodes, while the update delay decreases initially and then set-
tles down because as more items are cached, new CNs are set 
up.  
 

 
Fig. 6. Query and update delay, hit ratio, and bandwidth usage versus 
query request rate 
 
 
This increases the probability of having more CNs closer to the 

access point, which, in turn, results in smaller number of hops, 
on average, for the update packets to reach their destinations. 
Unlike ESIM, the update delay of C_UIR increases due to the 
increase in network traffic as seen in Fig. 6d. This large traffic, 
which is the cumulative result of requests, update reports, and 
control packets, can result in congestion that delays the query 
and update packets of C_UIR. It can also lead to more unsuc-
cessful requests, which, in turn, decreases the hit ratio. In con-
trast, the hit ratio of SSUM keeps increasing as the request rate 
increases for two reasons: first, the number of cached queries 
increases, and second, the network is not overcome by conges-
tion as in the other two schemes. The query delay of UIR 
drops as its hit ratio increases while its update delay is gener-
ally unaffected due to the broadcasting of updates.  
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