
International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 559
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

AN EFFICIENT CACHE CONSISTENCY
SCHEME IN MOBILE NETWORKS

T.Chindrella Priyadharshini, S.Neelakandan, M.Swarnalatha

Abstract— In this paper we proposes a cache consistency scheme based on a previously proposed architecture for caching database
data in MANETs. The original scheme for data caching stores the queries that are submitted by requesting nodes in special nodes, called
query directories (QDs), and uses these queries to locate the data (responses) that are stored in the nodes that requested them, called
caching nodes (CNs). The consistency scheme is server-based in which control mechanisms are implemented to adapt the process of
caching a data item and updating it by the server to its popularity and its data update rate at the server. The system implements methods to
handle disconnections of QD and CN nodes from the network and to control how the cache of each node is updated or discarded when it
returns to the network. Estimates for the average response time of node requests and the average node bandwidth utilization are derived in
order to determine the gains (or costs) of employing our scheme in the MANET. Moreover, ns2 simulations were performed to measure
several parameters, like the average data request response time, cache update delay, hit ratio, and bandwidth utilization. The results
demonstrate the advantage of the proposed scheme over existing systems.

Index Terms— Cache consistency, data consistency, invalidation, Kalmam filter prediction techniques, MANET, server-based approach,
and utility theory.

——————————  ——————————

1 INTRODUCTION
In a mobile ad hoc network (MANET), data caching is essen- tial as it reduces contention in the network, increases the
probability of nodes getting desired data, and improves sys-
tem performance [24], [28]. The major issue that faces cache
management is the maintenance of data consistency between
the client cache and the server [28]. In a MANET, all messages
sent between the server and the cache are subject to network
delays, thus, impeding consistency by download delays that
are considerably noticeable and more severe in wireless mo-
bile devices. All cache consistency algorithms are developed
with the same goal in mind: to increase the probability of serv-
ing data items from the cache that are identical to those on the
server. A large number of such algorithms have been proposed
in the literature, and they fall into three groups: server invali-
dation, client polling, and time to live (TTL). With server inval-
idation, the server sends a report upon each update to the cli-
ent. Two examples are the Piggyback server invalidation [7]
and the Invalidation report [19] mechanisms. In client polling,
like the Piggyback cache validation of [8], a validation request
is initiated according to a schedule. If the copy is up to date,
the server informs the client that the data have not been modi-
fied; else the update is sent to the client. Finally, with TTL al-
gorithms, a server-assigned TTL value (e.g., T) is stored
alongside each data item d in the cache. The data d are consid-
ered valid until T time units pass since the cache update. Usu-
ally, the first request for d submitted by a client after the TTL
expiration will be treated as a miss and will cause a trip to the
server to fetch a fresh copy of d. Many algorithms were pro-

posed to determine TTL values, including the fixed TTL ap-
proach [6], adaptive TTL [32], and Squid’s LM-factor [17]. TTL-
based consistency algorithms are popular due to their simplic-
ity, sufficiently good performance, and flexibility to assign TTL
values for individual data items [27]. However, TTL-based
algorithms, like client polling algorithms, are weakly con-
sistent, in contrast to server invalidation schemes that are gen-
erally strongly consistent. According to [32], with strong con-
sistency algorithms, users are served strictly fresh data items,
while with weak algorithms, there is a possibility that users
may get inconsistent (stale) copies of the data. This work de-
scribes a server-based scheme implemented on top of the
COACS caching architecture we proposed in [25]. In COACS,
elected query directory (QD) nodes cache submitted queries
and use them as indexes to data stored in the nodes that ini-
tially requested them (CN nodes). Since COACS did not im-
plement a consistency strategy, the system described in this
paper fills that void and adds several improvements: 1) ena-
bling the server to be aware of the cache distribution in the
MANET, 2) making the cached data items consistent with their
version at the server, and 3) adapting the cache update process
to the data update rate at the server relative to the request rate
by the clients. With these changes, the overall design provides
a complete caching system in which the server sends to the
clients selective updates that adapt to their needs and reduces
the average query response time. Next, Section 2 describes the
proposed system while Section 3 discusses the experimental
results, and Section 5 reviews some previous cache consisten-
cy techniques before concluding the paper in Section 6.

2. EMINENT SERVER IMPROVED MECHANISM
ESIM is a server-based approach that avoids many issues as-
sociated with push-based cache consistency approaches. Spe-
cifically, traditional server-based schemes are not usually
aware of what data items are currently cached, as they might

————————————————
• T.Chindrella Priyadharshini, currently working as a Assistant Professor in

R.M.K College of Engineering and Technology, India, E-mail: chindrel-
la17@gmail.com

• S.Neelakandan, currently working as a Assistant Professor in R.M.K Col-
lege of Engineering and Technology, India, E-mail: snksnk07@gmail.com

• M.Swarnalatha, currently working as a Assistant Professor in R.M.K
College of Engineering and Technology, India, E-mail:
swarni23@gmail.com

IJSER

http://www.ijser.org/
mailto:snksnk07@gmail.com

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 560
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

have been replaced or deleted from the network due to node
disconnections. Also, if the server data update rate is high rela-
tive to the nodes request rate, unnecessary network traffic
would be generated, which could increase packet dropout rate
and cause longer delays in answering node queries. ESIM re-
duces wireless traffic by tuning the cache update rate to the
request rate for the cached data.

2.1 Basic operations
Before detailing the operations of ESIM, we list in Table 1 the
messages used in the COACS architecture as we refer to them
in the paper. Given that no consistency mechanism was im-
plemented in COACS, it was necessary to introduce four addi-
tional messages. In ESIM, the server autonomously sends data
updates to the CNs, meaning that it has to keep track of which
CNs cache which data items. This can be done using a simple
table in which an entry consists of the id of a data item (or
query) and the address of the CN that caches the data. A node
that desires a data item sends its request to its nearest QD. If
this QD finds the query in its cache, it forwards the request to
the CN caching the item, which, in turn, sends the item to the
requesting node (RN).

Fig. 1. Scenarios for requesting and getting data in the COACS Archi-
tecture

Otherwise, it forwards it to its nearest QD, which has not re-
ceived the request yet. If the request traverses all QDs without
being found, a miss occurs and it gets forwarded to the server
which sends the data item to the RN. In the latter case, after
the RN receives the confirmation from the last traversed QD
that it has cached the query, it becomes a CN for this data item
and associates the address of this QD with the item and then
sends a Server Cache Update Packet (SCUP) to the server,
which, in turn, adds the CN’s address to the data item in its
memory. This setup allows the server to send updates to the
CNs directly whenever the data items are updated. Fig. 1 illus-
trates few data request and update scenarios that are de-
scribed below. In the figure, the requesting nodes (RNs) sub-
mit queries to their nearest QDs, as shown in the cases of RN1,
RN2, and RN3 . The query of RN1 was found in QD1 , and so

the latter forwarded the request to CN1, which returned the
data directly to the RN. However, the query of RN2 was not
found in any of the QDs, which prompted the last searched
(QD1) to forward the request to the server, which, in turn, re-
plied to RN2 that became a CN for this data afterward. The
figure also shows data updates (key data pairs) sent from the
server to some of the CNs.

2.2 Dealing with Query Replacement and Node Discon-
nections
A potential issue concerns the server sending the CN updates
for data that have been deleted (replaced), or sending the data
out to a CN that has gone offline. To avoid this and reduce
network traffic, cache updates can be stopped by sending the
server Remove Update Entry Packets (RUEPs). This could oc-
cur in several scenarios. For example, if a CN leaves the net-
work, the QD, which first tries to forward it a request and
fails, will set the addresses of all queries whose items are
cached by this unreachable CN in its cache to À1, and sends
an RUEP to the server containing the IDs of these queries. The
server, in turn, changes the address of that CN in its cache to
À1 and stops sending updates for these items. Later, if another
node A requests and then caches one of these items, the server,
upon receiving an SCUP from A, will associate A with this
data item. Also, if a CN runs out of space when trying to cache
a new item in , it applies a replacement mechanism to replace
id with in and instructs the QD that caches the query associat-
ed with id to delete its entry. This causes the QD to send an
RUEP to the server to stop sending updates for id in the fu-
ture. If a caching node CNd returns to the MANET after dis-
connecting, it sends a Cache Invalidation Check Packet (CICP)
to each QD that caches queries associated with items held by
this CN. A QD that receives a CICP checks for each item to see
if it is cached by another node and then sends a Cache Invali-
dation Reply Packet (CIRP) to CNd containing all items not
cached by other nodes. CNd then deletes from its cache those
items whose IDs are not in the CIRP but were in the CICP. Af-
ter receiving a CIRP from all QDs to which it sent a CICP and
deleting nonessential data items from its cache, CNd sends a
CICP containing the IDs of all queries with data remaining in
its cache to the server along with their versions. In the mean-
while, if CNd receives a request from a QD for an item in its
cache, it adds the request to a waiting list. The server then cre-
ates a CIRP and includes in it fresh copies of the outdated
items and sends it to CNd , which, in turn, updates its cache
and answers all pending requests. Finally, and as described in
[25], QD disconnections and reconnections do not alter the
cache of the CNs, and hence, the pointers that the server holds
to the CNs remain valid.

2.3 Adapting to the Ratio of Update rate and Request
rate
ESIM suspends server updates when it deems that they are
unnecessary. The mechanism requires the server to monitor
the rate of local updates, Ru , and the rate of RN requests, Rr ,
for each data item di . Each CN also monitors these values for
each data item that it caches. Whenever a CN receives an up-
date from the server, it calculates Ru =Rr and compares it to a

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 561
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

threshold À. If this ratio is greater than or equal to À, the CN
will delete di and the associated information from its cache
and will send an Entry Deletion Packet (EDP) to the QD (say,
QDd) that caches query qi . The CN includes in the header of
EDP a value for Ru , which tells QDd that di is being removed
due to its high update-to-request ratio. Normally, when a QD
gets an EDP, it removes the cached query from its cache, but
here, the nonzero value of Ru in the EDP causes QDd to keep
the query cached, but with no reference to a CN. Next, QDd
will ask the server to stop sending updates for di . Afterward,
when QDd receives a request from an RN node that includes
qi , it forwards it to the server along with a DONT_CACHE
flag in the header to be later passed in the reply, which in-
cludes the results, to the RN. Under normal circumstances in
COACS, when an RN receives a data item from the server in
response to a query it had submitted, it aESIMes the role of a
CN for this item and will ask the nearest QD to cache the que-
ry. The DONT_CACHE flag instructs the RN to treat the result
as if it were coming from the cache and not become a CN for
it. Now, at the server, each time an update for qi occurs and a
new Ru=Rr is computed, if this ratio falls below a second
threshold, (< À), the server will reply to the RN with a DREP
that includes the CACHE_NEW flag in the header. Upon re-
ceiving the DREP, the RN sends a QCRP with the
CACHE_NEW flag to its nearest QD. If this QD caches the
query of this item (with À1 as its CN address), it sets its ad-
dress to its new CN, else it forwards the request to its own
nearest QD. If the QCRP traverses all QDs without being pro-
cessed (implying that the QD caching this item has gone of-
fline), the last QD at which the QCRP arrives will cache the
query with the CN address. By appropriately selecting the
values of and À, the system can reduce unnecessary network
traffic. The processing time of qi will suffer though when Ru
=Rr is above after it had passed À since QDd will be sending
qi to the server each time it receives it. However, the two
thresholds allow for favoring bandwidth consumption over
response time, or vice versa. This makes ESIM suitable for a
variety of mobile computing applications: a large À may be
used when disconnections are frequent and data availability is
important, while a low À could be used in congested envi-
ronments where requests for data are infrequent or getting
fresh data is not critical.

2.4 Accounting for Latency in Receiving Server up-
dates
Given the different processes running at the server and since it
sends the updates to the CNs via unicasts, there may be a time
gap between when an update occurs and when the CN actual-
ly receives the updated data item d. Hence, if the CN gets a
request for d during this time, it will deliver a stale copy of d
to the RN. Our design uses the time stamp that the server
sends with each update in an attempt to mitigate this issue. To
explain this, suppose that the time stamp sent with d is ts and
the time of receiving d by the CN is tc . Upon getting an up-
date, the CN checks if it had served any RN a copy of d from
its cache in the past ts-tc milliseconds. If it is the case, the CN
sends a new DREP to the RN, but now it includes the fresh
copy of d. The above solution assumes that the clocks of the
nodes in the MANET and that of the server are synchronized.

This assumption is realistic given that node clock synchroniza-
tion is part of the MAC layer protocol, as specified by the IEEE
802.11 standards [4]. In particular, IEEE 802.11 specifies a Tim-
ing Synchronization Function (TSF) through which nodes syn-
chronize their clocks by broadcasting their timing information
using periodic beacons. Since the Access Point (AP) is consid-
ered a node in the MANET and it can synchronize its clock
with that of the server asynchronously with respect to the
MANET through the wired network, it will be possible to syn-
chronize the clocks of the mobile nodes with that of the server
at almost a zero cost to them (no protocol besides the MAC
layer’s TSF is needed). The suitability of TSF for ESIM depends
on its effectiveness. It was shown in [22] that using TSF, the
maximum clock offset in the case of 500 nodes is 700 s. Several
approaches were proposed to reduce this error. The Automatic
Self-time Correcting Procedure (ASP) [16] reportedly reduced
the maximum offset to 300 s, while the Multi hop Adaptive
TSF (MATSF) method [22] cut it down to 50 s, but at the ex-
pense of adding 8 bits to the IEEE 802.11 frame. In Section 2.6,
we show that ESIM is best characterized by the delta con-
sistency model [9], where the upper bound for the delta be-
tween the time of the server’s update and the time the RN gets
a fresh copy is in tens of milliseconds. It follows that TSF will
virtually not increase this delta, especially in small to moder-
ately sized networks.

2.5 Overhead Cost
When a node joins the network, the server will know about it
when it first gets a query from it in a DRP that is forwarded by
one of the QD nodes. Each data item at the server that is
cached in the network is associated with a query id, a request
rate, an update rate, and the address of the CN caching it. This
additional information could cost the server about 16 bytes of
extra storage per record. Hence, from a storage perspective,
this cost may be deemed insignificant when considering the
capabilities of modern servers. In terms of communication
cost, the server communicates with the CNs information about
the rates uses control packets (RUEP, SCUP, CICP, and CIRP)
to manage the updating process. Here, it suffices to state that
the simulation results (Section 4.10) indicate that the overall
overhead traffic (including other packets that do not concern
the server) is a small portion of the data traffic. Finally, from a
processing load point of view, the server is only required to
manipulate the update rate when appropriate. In conclusion,
the server will not incur any notably additional load due to its
role in this architecture. Hence, the system should be able to
scale to a large number of cached items. A similar argument
can be made for the CNs, although the main concern here is
the impact on the cache space and replacement frequency. Us-
ing the same value of 5 KB for the average data item size (as in
the simulations of Section 4), with caching capacity of 200 KB,
a CN can cache about 40 data items. The additional overhead
required for storing the request and update rates of one single
data item is 8 bytes, and therefore, the overhead for storing the
request and update rates at the CN is less than 0.16 percent of
the available space. It follows that the space for caching at the
CNs is minimally impacted by this additional information.
Also, the frequency of cache replacements will not increase in
a major way because of this.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 562
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

2.6 Consistency Model
From the characteristics of ESIM described above, we may
relate it to the delta consistency model [21]. Assuming the RN
always requires a fresh copy of item d, a CN may end up
sending two copies of d to an RN in case the CN serves a copy
of d from its cache shortly before receiving a server update for
it. First, we emphasize that from the perspective of the RN, d
will be considered fresh only if it is a duplicate of the server’s
version at the time it is received (i.e., the server has not updat-
ed it just yet). We now define two boundary situations in
which the RN gets a stale copy of d. In the first one, immedi-
ately after the server updates d at ts and sends it into the net-
work, the RN receives a copy of it from the CN based on a
request it had sent. In the second one, right after the CN serves
the RN a copy of d, it receives an updated version from the
server. Assuming that when the server updates d, it immedi-
ately sends it out, and that it
is connected to the MANET via an access point in the corner of
the network, we can now compute an interval for the maxi-
mum “delta” between ts and the time the RN gets a fresh copy
of it. To do this, we borrow some definitions from our work in
[25] in relation to the average number of hops. The top two
definitions below are used here while the other two are used
in Section 3, but all are detailed in

• HC is the average number of hops between the corner
of the topology and a random node in the MANET. It applies
when a packet is sent between the server and the random
node.

• HR is the expected number of hops between any two
randomly selected nodes.

• HA is the expected number of hops to traverse all the
QDs in the system, which usually occurs in the case of a cache
miss.

• HD is the expected number of hops to reach the QD
which holds the reference to the requested data, in the case of
a hit
Hence, if Tin is the transmission delay between two neighbor-
ing nodes in the wireless network and Tout is the delay in the
wired network to/from the server, then the delay until the RN
gets a fresh copy of d in the first situation is Tout þ HC Â Tin
þ HR Â Tin, while in the second situation, it is simply HR Â
Tin. Using the values of HC and HR in [2], we can deduce that
the maximum delta will be expressed as Ámax 2
½0:52Tina=r0; Tout þ 1:29Tin a=r0Š, where a is the side length
of the square topography and r0 is the wireless transmission
range. Taking a as 1,000 m, r0 as 100 m, Tin as 5 ms, and Tout
as 40 ms, Ámax will be in the range of 25-105 ms.

3. PERFORMANCE EVALUATION
We used the ns2 software to implement the SSUM system, and
to also simulate the Updated Invalidation Report (UIR) mech-
anism [10] in addition to a version of it that is implemented on
top of COACS so that a presumably fairer comparison with
ESIM is done.

3.1 Network and Cache Simulation Parameters
A single database server is connected to the wireless network
through a fixed access point, while the mobile nodes are ran-
domly distributed. The client cache size was fixed to 200 Kb,

meaning that a CN can cache between 20 and 200 items, while
the QD cache size was set to 300 Kb, and therefore, a QD can
cache about 600 queries. We used the least recently used (LRU)
cache replacement policy when the cache is full and a data
item needs to be cached. Each scenario started with electing
one QD, but more were elected when space was needed. Each
scenario lasted for 2,000 seconds and repeated 10 times with
the seed of the simulation set to a new value each time, and
the final result
was taken as the average of the 10 runs.
The SSUM system was implemented as a new C++ agent in ns2
that gets attached to the node class in the tcl code at simula-
tion runtime. This implementation includes a cache class that
defines and sets the needed data items as well as the opera-
tions of the caching methods that were described. Also, the
routing protocols in ns2 were modified to process the SSUM
packets and to implement the functions of the MDPF algo-
rithm used for traversing the QD system [3]. Other changes to
the ns2 C++ code included modifying the packet header in-
formation which is used to control the cache update process.
After implementing the changes in the C++ code, tcl scripts
were written to run the various described scenarios

3.2 The Query Model Parameters
The client query model was chosen such that each node in the
network generates a new request every Tq seconds. When the
simulation starts, each node generates a new request, and after
Tq seconds, it checks if it has not received a response for the
request it generated in which case, it discards it and generates
a new request. We chose a default value for Tq equal to 20 se-
conds, but in order to examine the effect of the request rate on
the system performance, we simulated several scenarios with
various request rates. The process of generating a new request
followed a Zipf-like access pattern, which has been used fre-
quently to model nonuniform distributions [32]. In Zipf law,
an item ranked where ranges between 0 (uniform distribu-
tion) and 1 (strict Zipf distribution). The default value of the
zipf parameter was set to 0.5. Every second, the server up-
dates a number of randomly chosen data items, equal to a de-
fault value of 20. The default values of À and were set to 1.25
and 0.75, respectively, while the default number of node dis-
connections is 1 every two minutes with a period of 10 se-
conds, after which the node returns to the network.

3.3 Varying the Number of Nodes
This section presents the effects of varying the node density in
the fixed network area. Fig. 5a shows that the query delay of
UIR is much greater than that of ESIM and C_UIR. The reason
for this is that an issued query in ESIM does not have to wait
for any report from the server, as it is always served directly
after it is issued, whereas in UIR, it must wait for the next UIR
to arrive from the server before getting processed. Moreover,
in the event of a local cache miss in UIR, the data item must be
fetched from the server, but in COACS and C_UIR, the data
are next searched for in the QD system for possible network
cache hit. Fig. 5b shows that the update delays of UIR and
C_UIR are less than that of ESIM when there are less than 100

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 563
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

nodes, simply because updates in UIR are broadcasted.

Fig. 5. Query and update delay, hit ratio, and bandwidth usage versus
number of nodes.

But, when the number of nodes increases, congestion starts to
buildup, which why the hit ratio of this scheme drops rapidly
and its traffic increases as shown in Figs. 5c and 5d. Finally, we
reiterate the fact that the presented update delay for UIR and
C_UIR is not the total delay since it measures the time until
the item’s ID reaches the RN/CN, whereas for ESIM, it is the
entire delay since it is the time until the data item itself reaches
the CN.

3.4 Varying the Query Request Rate
When the request rate is increased, the query delay of ESIM
rises as shown in Fig. 6a due to queuing more packets in the
nodes, while the update delay decreases initially and then set-
tles down because as more items are cached, new CNs are set
up.

Fig. 6. Query and update delay, hit ratio, and bandwidth usage versus
query request rate

This increases the probability of having more CNs closer to the

access point, which, in turn, results in smaller number of hops,
on average, for the update packets to reach their destinations.
Unlike ESIM, the update delay of C_UIR increases due to the
increase in network traffic as seen in Fig. 6d. This large traffic,
which is the cumulative result of requests, update reports, and
control packets, can result in congestion that delays the query
and update packets of C_UIR. It can also lead to more unsuc-
cessful requests, which, in turn, decreases the hit ratio. In con-
trast, the hit ratio of SSUM keeps increasing as the request rate
increases for two reasons: first, the number of cached queries
increases, and second, the network is not overcome by conges-
tion as in the other two schemes. The query delay of UIR
drops as its hit ratio increases while its update delay is gener-
ally unaffected due to the broadcasting of updates.

REFERENCES
[1] Y. Chung and C. Hwang, “Transactional Cache Management

with Aperiodic Invalidation Scheme in Mobile Environments,”
Advances in Computing Science, pp. 50-61, Springer, 1999.

[2] Elmagarmid, J. Jing, A. Helal, and C. Lee, “Scalable Cache Inval-
idation Algorithms for Mobile Data Access,” IEEE
Trans.Knowledge and Data Eng., vol. 15, no. 6, pp. 1498-1511,
Nov. 2003.

[3] H. Jin, J. Cao, and S. Feng, “A Selective Push Algorithm for Co-
operative Cache Consistency Maintenance over MANETs,”Proc.
Third IFIP Int’l Conf. Embedded and Ubiquitous Computing,
Dec.2007.

[4] IEEE Standard 802.11, Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specification, IEEE, 1999.

[5] J. Jing, A. Elmagarmid, A. Helal, and R. Alonso, “Bit-Sequences:
An Adaptive Cache Invalidation Method in Mobile Cli-
ent/ServerEnvironments,” Mobile Networks and Applications,
vol. 15, no. 2,pp. 115-127, 1997.

[6] J. Jung, A.W. Berger, and H. Balakrishnan, “Modeling TTL-
Based Internet Caches,” Proc. IEEE INFOCOM, Mar. 2003.

[7] X. Kai and Y. Lu, “Maintain Cache Consistency in Mobile Data-
base Using Dynamical Periodical Broadcasting Strategy,” Proc.
Second Int’l Conf. Machine Learning and Cybernetics, pp. 2389-
2393, 2003.

[8] B. Krishnamurthy and C.E. Wills, “Piggyback Server Invalida-
tion for Proxy Cache Coherency,” Proc. Seventh World Wide
Web (WWW) Conf., Apr. 1998.

[9] B. Krishnamurthy and C.E. Wills, “Study of Piggyback Cache
Validation for Proxy Caches in the World Wide Web,” Proc.
USENIX Symp. Internet Technologies and Systems, Dec. 1997.

[10] D. Li, P. Cao, and M. Dahlin, “WCIP: Web Cache Invalidation
Protocol,” IETF Internet Draft, http://tools.ietf.org/html/draft-
danli-wrec-wcip-01, Mar. 2001.

[11] W. Li, E. Chan, Y. Wang, and D. Chen, “Cache Invalidation
Strategies for Mobile Ad Hoc Networks,” Proc. Int’l Conf. Paral-
lel Processing, Sept. 2007.

[12] S. Lim, W.-C. Lee, G. Cao, and C.R. Das, “Performance Compar-
ison of Cache Invalidation Strategies for Internet-Based Mobile-
Ad Hoc Networks,” Proc. IEEE Int’l Conf. Mobile Ad-Hoc and
Sensor Systems, pp. 104-113, Oct. 2004.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 564
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

[13] M.N. Lima, A.L. dos Santos, and G. Pujolle, “A Survey of Sur-
vivability in Mobile Ad Hoc Networks,” IEEE Comm. Surveys
and Tutorials, vol. 11, no. 1, pp. 66-77, First Quarter 2009.

[14] H. Maalouf and M. Gurcan, “Minimisation of the Update Re-
sponse Time in a Distributed Database System,” Performance
Evaluation, vol. 50, no. 4, pp. 245-266, 2002.

[15] P. Papadimitratos and Z.J. Haas, “Secure Data Transmission in
Mobile Ad Hoc Networks,” Proc. ACM Workshop Wireless Se-
curity (WiSe ’03), pp. 41-50, 2003.

[16] J.P. Sheu, C.M. Chao, and C.W. Sun, “A Clock Synchronization
Algorithm for Multi-Hop Wireless Ad Hoc Networks,” Proc.
24th Int’l Conf. Distributed Computing Systems, pp. 574-581,
2004.

[17] W. Stallings, Cryptography and Network Security, fourth ed.
Prentice Hall, 2006.

[18] D. Wessels, “Squid Internet Object Cache,” http://www. squid-
cache.org, Aug. 1998.

[19] J. Xu, X. Tang, and D. Lee, “Performance Analysis of Location-
Dependent Cache Invalidation Schemes for Mobile Environ-
ments,” IEEE Trans. Knowledge and Data Eng., vol. 15, no. 2,
pp. 474-488, Feb. 2003.

[20] L. Yin, G. Cao, and Y. Cai, “A Generalized Target Driven Cache
Replacement Policy for Mobile Environments,” Proc. Int’l Symp.
Applications and the Internet (SAINT ’03), Jan. 2003.

[21] J. Yuen, E. Chan, K. Lain, and H. Leung, “Cache Invalidation
Scheme for Mobile Computing Systems with Real-Time Da-
ta,”SIGMOD Record, vol. 29, no. 4, pp. 34-39, Dec. 2000.

[22] D. Zhou and T.H. Lai, “An Accurate and Scalable Clock Syn-
chronization Protocol for IEEE 802.11-Based Multihop Ad Hoc
Networks,” IEEE Trans. Parallel and Distributed Systems, vol.
18, no. 12, pp. 1797-1808, Dec. 2007.

[23] G. Zipf, Human Behavior and the Principle of Least Effort. Ad-
dison-Wesley, 1949.

[24] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast
Disks: Data Management for Asymmetric Communications
Environments,” Proc. ACM SIGMOD, pp. 199-210, May 1995.

[25] H. Artail, H. Safa, K. Mershad, Z. Abou-Atme, and N. Sulieman,
“COACS: A Cooperative and Adaptive Caching System for
MANETS,” IEEE Trans. Mobile Computing, vol. 7, no. 8, pp.
961-977, Aug. 2008.

[26] H. Artail and K. Mershad, “MDPF: Minimum Distance Packet
Forwarding for Search Applications in Mobile Ad Hoc Net-
works,” IEEE Trans. Mobile Computing, vol. 8, no. 10, pp. 1412-
1426, Oct. 2009.

[27] O. Bahat and A. Makowski, “Measuring Consistency in TTL-
Based Caches,” Performance Evaluation, vol. 62, pp. 439-455,
2005.

[28] D. Barbara and T. Imielinski, “Sleepers and Workaholics: Cach-
ing Strategies for Mobile Environments,” Proc. ACM SIGMOD,
pp. 1-12, May 1994.

[29] C. Bettstetter and J. Eberspacher, “Hop Distances in Homogene-
ous Ad Hoc Networks,” IEEE Proc. 57th IEEE Semiann. Vehicu-
lar Technology Conf., vol. 4, pp. 2286-2290, Apr. 2003.

[30] N.A. Boudriga and M.S. Obaidat, “Fault and Intrusion Toler-
ance in Wireless Ad Hoc Networks,” Proc. IEEE Wireless

Comm. And Networking Conf. (WCNC), vol. 4, pp. 2281-2286,
2005.

[31] J. Cai and K. Tan, “Energy-Efficient Selective Cache Invalida-
tion,” Wireless Networks J., vol. 5, no. 6, pp. 489-502, Dec. 1999.

[32] J. Cao, and C. Liu, “Maintaining strong Cache Consistency of
Cooperative Caching in the world wide web,” IEEE Trans.
Computers, vol. 47, no. 4, pp. 445-457, Apr. 1998.

IJSER

http://www.ijser.org/

	1 Introduction
	2. EMINENT SERVER IMPROVED MECHANISM
	2.1 Basic operations
	2.2 Dealing with Query Replacement and Node Disconnections
	2.3 Adapting to the Ratio of Update rate and Request rate
	2.4 Accounting for Latency in Receiving Server updates
	2.5 Overhead Cost
	2.6 Consistency Model

	3. PERFORMANCE EVALUATION
	3.1 Network and Cache Simulation Parameters
	3.2 The Query Model Parameters
	3.3 Varying the Number of Nodes
	3.4 Varying the Query Request Rate

	REFERENCES

